Numerically Balanced Dice

Robert Bosch, Robert Fathauer, and Henry Segerman

January 25, 2016

Abstract

We discuss what it might mean for a die to be numerically balanced, explore connections with magic squares, and
present integer programming models that can be used to design numerically balanced dice.

Introduction

On most commercially available twenty-sided dice (d20s), the numbers on opposite sides sum to 21. This
is true for the d20 shown in Figure 1(a), manufactured by Chessex, which has the 8 opposite the 13, the 20
opposite the 1, the 10 opposite the 11, and so on. Why do die manufacturers do this? To answer this question,
let’s perform a thought experiment. Suppose we get our hands on a perfectly fair d20, a regular icosahedron.
We heat it up to make it soft, and then we carefully position it in a vice or a clamp, as in Figure 1(b), making
sure that one of the faces lies flat against one jaw and that the opposite face lies flat against the other jaw.
Then, with every turn of the crank, the jaws move closer and closer together, squeezing the two “jaw faces”
closer and closer to each other, and making the once-fair d20 flatter and flatter, less and less of a regular
icosahedron, and more and more like a coin. And with every turn of the crank, the d20 will become less fair.
If we are careful with the squeezing, each jaw face will continue to be as likely to turn up as the other jaw
face, but each jaw face will also become more likely to turn up than any of the 18 non-jaw faces. Still, if
the numbers on opposite faces sum to 21, then the expected value of a single roll of the squashed d20 will
remain 10.5, the value for a fair d20 (the average of the numbers 1 through 20). So the squashed d20 won’t
systematically favor higher-than-average or lower-than-average numbers.

Figure 1: (a) a d20 and its reflection in a mirror, (b) squeezing a d20.

Our thought experiment reveals that the opposite numbers convention is a form of “numerical balancing”
that serves to promote fairness, giving die manufacturers a way of hedging against the possibility that their
d20s are not perfectly formed regular isocahedra. Are there additional measures that they could take? Is it
possible to make d20s that are even more numerically balanced?

Vertex Sums

For each vertex of a d20, we can compute the vertex sum—the sum of the numbers on the five faces that
meet at that vertex. If a d20’s numbers were uniformly spread amongst its twenty faces, then each vertex sum
would be 52.5 = 5 x 10.5, five times the average of the numbers on the die. If all twelve of a d20’s vertex
sums are as close to 52.5 as possible (i.e., all of its vertex sums are 52 or 53), we say that it has numerically
balanced vertices.

Having numerically balanced vertices could provide additional protection against certain manufacturing
imperfections and irregularities. Let’s perform a second thought experiment: Suppose that the d20 shown in
Figure 1 contains a large air bubble that lies just beneath the vertex formed by the faces numbered 1, 13, 5,
15, and 7. With the bubble-vertex side of the d20 being less dense than the rest of the die, its faces may be
more likely to turn up than the others. If so, the die would tend to produce lower numbers than a fair d20
would. The reason why is that the bubble vertex’s vertex sum, 1 4+ 13 4+ 5 4+ 15 4+ 7 = 41, is considerably
lower than the ideal vertex-sum value, 52.5.

Face Sums

Similarly, for each face of a d20, we can compute the face sum—the sum of the numbers on the three
faces that are adjacent to that face. If a d20’s numbers were uniformly spread amongst its twenty faces, then
each face sum would be 31.5, three times the average of the numbers on the die. If all twenty of a d20’s face
sums are as close to 31.5 as possible (i.e., all of its face sums are 31 or 32), we say that it has numerically
balanced faces.

Having numerically balanced faces could provide even more protection against manufacturing defects.
For a third thought experiment, suppose that an air bubble lies just below the face numbered 13 and suppose
in addition that there is a small bump on the surface of the opposite face. These two defects may cause
the numbers adjacent to the 13—the 1, the 11, and the 5—to turn up with greater frequency than the other
numbers. If so, the die will once again favor lower numbers. Here, the reason is that the face sum of
1+ 11 + 5 = 17 is substantially lower than the ideal face-sum value, 31.5.

Full Face Sums

Alternatively, for each face of a d20, we could compute the full face sum—the sum of the numbers on
the three faces adjacent to that face plus the number on that face itself. Although it may seem preferable—
for aesthetic or geometric reasons—to use full face sums when defining numerically balanced faces, doing
so turns out to be problematic. Consider a cube, and consider numbering it to form a d6. If we follow
the opposite numbers convention, keeping the 6 opposite the 1, the 5 opposite the 2, and the 4 opposite
the 3, then there are two possible numberings, and they are mirror images of each other. In each of these
numberings, each face has the same face-sum value, 14, as the four adjacent faces will always contain two
pairs of opposite faces whose numbers sum to 7. But in each of these numbering, each face does not have
the same full-face-sum value. Instead, there are six different full-face-sum values: 15, 16, 17, 18, 19, and 20.
(The 15 is the full-face sum for the 1, the 16 is the full-face sum for the 2, and so on.) Thus, for a d6, if we
are committed to following the opposite numbers convention, there is no way of making all of its full face
sums the same. This is also true for a d20. The methods we describe later in this paper can be used to show
that if we number a d20 in accordance with the opposite numbers convention, there is no way of making all
of its full face sums the same.

Equatorial Bands

If we select a vertex to serve as a d20’s north pole, then its opposite vertex must be its south pole. The
five faces adjacent to the north pole form the northern polar cap, and the five adjacent to the south pole form
the southern polar cap. The remaining ten faces—five pairs of opposite faces—form an equatorial band that

encircles the d20. Figure 2 displays two views of one of the ten possible equatorial bands.

Figure 2: Two views of an equatorial band.

A net enables us to see all twenty faces of a d20 at once. In Figure 3, the top and bottom rows of the net
are the two polar caps shown in Figure 2, and the middle row is the corresponding equatorial band. For each
possible equatorial band, we can compute the band sum—the sum of the numbers on the faces that make up
the band. But in this case we don’t need to do so. If a d20 obeys the opposite numbers convention, then each
of its band sums must be 105, as each band is made of five pairs of opposite faces whose two numbers sum
to 21.

In other words, if a d20 obeys the opposite numbers convention, then it must have numerically balanced
equatorial bands. And numerically balanced equatorial bands are desirable. Let’s perform one final thought
experiment. Suppose that during the manufaturing process, one particular north-pole-south-pole pair is far-
ther apart that it should be, making the d20 somewhat cigar shaped. If so, the faces on the equatorial band
would turn up more often the others. But if each band sum is 105, then the expected value of a single roll
will remain 10.5.

3 4 5

2
15 / 17 10 12

2 3 4 5 6
6 5 8 1 10 3 12 8 14 2
18\7/13\¢/ 19 \1/ 16 \\'z/ 20 \'s
7 8 9 10 11

4 11 9 6 14

17 20

16 18 19

(2

Figure 3: A net for the Chessex d20. This is a common numbering and is typical of that used by other
manufacturers.

The Chessex d20—the one shown in the photos and net—obeys the opposite numbers convention and
therefore has numerically balanced equatorial bands. We have already demonstrated—by computing a single
vertex sum and a single face sum—that it has neither numerically balanced vertices nor numerically balanced

faces. With the net—which gives the numbers that index the faces and vertices in a small gray font, and the
numbering itself in a larger black font—we can quickly verify that this d20 is not even remotely close to
having numerically balanced vertices or faces. Only four of the vertex sums—those that are underlined—are
as close as possible to the ideal vertex-sum value, 52.5:

vertex index‘ 12 3 4 5 6 7 8 9 10 11 12
vertex sum | 61 52 41 47 54 52 51 53 53 64 58 44

And none of the face sums are as close as possible to the ideal face-sum value, 31.5:

face index ‘ 1 2 3 4 5
facesum |24 33 20 37 27

faceindex‘ 6 7 & 9 10 11 12 13 14 15
face sum ‘11 46 17 39 13 52 17 46 24 50

faceindex | 16 17 18 19 20
facesum |43 26 36 39 30

Several natural questions arise: Is there a better (more numerically balanced) d20? Is there a best (most
numerically balanced) d20? This last question can be rephrased as follows: Does there exist a d20 that obeys
the opposite numbers convention and has both numerically balanced vertices and faces? What about other
polyhedral dice?

Magic Squares

The problem of finding a numerically balanced d20 is similar to the problem of finding a magic square. An
order-n magic square is an n X n array that contains the integers 1 through n? and whose rows, columns, and
main diagonals all sum to the same number ¢ = (n? + n)/2. Two renditions of an order-4 magic square are
displayed below. The version made out of LEGO demonstrates that magic squares are not only numerically
balanced, but can be used to form physically balanced structures as well.

1 8 | 13 | 12

14 | 11 2 7

15|10 | 3 6

Figure 4: (a) an order-4 magic square, (b) the same square made out of LEGO.

The problem of finding an order-n magic square can be formulated as an integer program (IP). Integer
programs are mathematical optimization problems in which the objective is to optimize (in some cases, to
maximize, and in others, to minimize) a linear function of integer-valued variables subject to one or more
linear constraints (equations or inequalities) on those variables [10]. Since the 1960s, integer programs have
been applied with great frequency and success to problems in the areas of logistics, manufacturing, and
scheduling, and in these applications, the objective is usually to maximize profit or minimize cost [4]. But
integer programs have also been used to solve puzzles [1,5], investigate cellular automata [2], and transform
target images into mosaics and continuous line drawings [3].

When modeling the magic square problem as an IP, the natural starting point is to define a variable x; ;
to represent the as-yet-unknown number that will be placed in cell (i, j), the cell in row ¢ and column j of
the array. With these variables, it is easy to express the constraints on the row sums, the column sums, and
the two diagonal sums with linear equations:

n
Zazi,j = ¢ foreach1l < i <n, (D)
7=1
n
Z:Um- = ¢ foreachl < j <n,)
i=1
n
Zl’m = C and (3)
i=1
n
inm-i-l—i = c “4)
i=1

The difficulty is finding a way of forcing all of the x; ; values to be different from one another using only
linear equations or inequalities. One standard approach introduces binary variables

o 1 ifl‘iyj:k?,
Yiik =9 o if not,

along with the following linear equations:

n n
Z Zywk = 1 foreach 1 < k < n?, ®)
i=1j=1
,n2
Zyz‘,j,k = 1 foreachl1 <i<n,1<j<n, ©)
k=1
TL2
Z kyije = xij foreach1 <i<mn,1<j<n. (7
k=1

The equations in (5) and (6) are known as assignment constraints. They state that each number between 1
and n? must be placed in a cell and that each cell (i, j) must receive a number. The equations in (7) establish
links between the z; ; variables and the y; ; ,, variables. They make sure that z; ; = kif and only if y; ; , = 1.

No objective function is needed—the magic square problem is a feasibility problem, a constraint sat-
isfaction problem—but we can create a dummy objective function by defining dummy costs ¢; j r = 0 for
alll < i <mn 1< j<n 1<k < n? Orif we have in mind a meaningful non-zero objective
function—perhaps we want to make the sum of the interior cell numbers as small as possible—we can com-
pute appropriate values for the ¢; ; 5 coefficients. Regardless, to obtain our magic square, we then solve the

following IP:

n n 7’L2
minimize Z Z Z Cij,kYi,j.k

i=1j=1k=1
subject to constraints (1) through (7),
zi; € {1,2,...,n%} foreach1 <i<n,1<j<n
vi ik € {0,1} foreachl1 <i<n,1<j<n,1<k<n?

Finding Numerically Balanced d20s

The problem of finding a numerically balanced d20 can also be formulated as an IP.
Notation

Here, we let F' denote the set of faces of the d20 and V the set of vertices. For each v € V, we let P,
denote the set of five faces that meet at vertex v. The faces in P, form a pentagonal cap centered at v. For
each f € I', we let A; denote the set of three faces that are adjacent to face f. Finally, for each f € F, we
let O(f) stand for the face that is opposite face f.

Variables

As in the magic squares model, we have two sets of variables. For each f € F, we let xy equal the
number assigned to face f. For each f € F'and each 1 < k < 20, we lety; = 1if 2y = k and 0 if not.

A Nonlinear Model

minimize S wp) 315 8)
feF f/EAf
20

subject to Z yrr =1 foreach f € F,)
k=1
Z yre =1 foreach1 < k < 20, (10)
feF
20
Zkyf,k:xf foreach f € F (11)
k=1
Ty + a0 =21 foreach f € F 12)
52< Y ay <53 foreachv € V (13)

fepr,

xy € {1,2,...,20} foreach f € F (14)
yrr € {0,1} for each f € Fandeach 1 < k < 20. (15)

The objective function, (8), is the sum of twenty nonnegative error terms, one per face. For each face
f € F, we define the face-sum deviation to be the face sum minus the ideal face-sum value, 31.5. Note
that the face-sum deviation could be negative. We define the error for face f to be the absolute value of its
face-sum deviation. By minimizing the sum of the errors—the sum of the absolute values of the face-sum
deviations—we are searching for a numbering that has numerically balanced faces.

The constraints in (9), (10), and (11) are analogous to (5), (6), and (7) in the magic square model. The
equations in (9) and (10) are assignment constraints that force us to give each face a number from 1 to 20

and to use each of these numbers exactly once, and the equations in (11) are linking constraints that make
sure that zy = k if and only if ys s = 1.

Finally, the constraints in (12) and (13) ensure that model generates a numbering that obeys the opposite
numbers convention and has numerically balanced vertices.

A Linear Model

Instead of trying to tackle the nonlinear model we just described—the absolute value error terms in the
objective function make it nonlinear—we solve a related model that has a linear objective function. To
“linearize” the original objective function (8), we can introduce a continuous variable z¢ to stand in for face
Jf’s error term in (8) and then impose two lower bounds on each z;:

2> (Y axp)—315 (16)
fIEAf
2y 2315 — (> ap). (17)
f/EAf

Inequality (16) states that z; must be at least as big as face f’s face-sum deviation, and inequality (17) states
that z; must be at least as big as the negative of f’s face-sum deviation. Combining (16) and (17) gives us

zpzmax{(Y wp) = 315,315 (Y zp)p=|(Y @p)-315|

fredy f'eAs freAs

If we minimize the sum of the z variables subject to (16) and (17) and all of the previous constraints, then
in the optimal solution, z; will equal the error for face f.

Results

We solved the linearized model—a mixed integer program due to the continuous z; variables—with
branch and bound, a divide-and-conquer strategy that tackles an IP or mixed IP by constructing a binary
tree of linear programming (LP) relaxations. We used Gurobi Optimizer 6.0.0 [8] to perform the branch
and bound, and it needed only 0.13 seconds and a total of 5479 iterations of the simplex algorithm to find a
optimal solution and prove its optimality. The branch-and-bound tree had 362 nodes. Figure 5 displays the
optimal solution. Using this net, it is easy to verify that six of the twelve vertices have vertex sums of 52,
and the remaining six—the opposite vertices—have vertex sums of 53.

vertexindex [1 2 3 4 5 6 7 8 9 10 11 12
vertex sum | 52 52 53 53 52 52 53 53 53 52 52 53

And it is also easy to check that ten of the twenty faces have face sums of 31, and the other ten—the opposite
faces—have face sums of 32.

face index ‘ 1 2 3 4 5
face sum ‘32 31 32 31 31

faceindex‘ 6 7 8 9 10 11 12 13 14 15
facesum |32 31 32 32 32 31 32 31 31 31

faceindex | 16 17 18 19 20
facesum |31 32 32 31 32

Accordingly, the optimal numbering has numerically balanced faces and vertices.
Figure 6 shows five copies of our numerically balanced d20, the first of its kind (to our knowledge). They
are available from The Dice Lab [6].

(1)
3 4 5
11 1 15 13 12
3 4 5 6

6 19 8 5 10 18 12\ 4 14 7
3\ /17\°/14\'"/ 2 \2/ 16 \'*
6

7 8 9 10 11
8 9 10 20
17 18 19 20

@

-
»

Figure 5: A net for the optimal solution.

Figure 6: Five copies of The Dice Lab’s numerically balanced d20.

Other Dice

The definitions and models can be modified for other polyhedral dice. Some of the most commonly used
dice—the d4, d6, d8, d12, and d20—are based on the five platonic solids. In a platonic solid, each vertex is
the same degree (each is touched by the same number of faces).

But for other polyhedra, this isn’t necessarily the case. The rhombic triacontahedron, for example, is a
polyhedron that has 30 faces and 32 vertices. Twenty of the vertices are degree 3, and the remaining twelve
have degree 5. For a d30 based on the rhombic triacontahedron, opposite faces should sum to 31. Ideally,
each degree-3 vertex would have a vertex sum of 46.5 = 3 x 15.5, three times the average of the numbers
from 1 to 30, and each degree-5 vertex would have a vertex sum of 77.5 = 5 x 15.5, five times the average.

The diskyakis triacontahedron is a polyhedron that has 120 faces and 62 vertices. Thirty of the vertices

are degree 4, twenty are degree 6 and the remaining twelve are degree 10. For a d120 based on the diskyakis
triacontahedron, opposite faces should sum to 121. Ideally, each degree-4 vertex would have a vertex sum
of 242 = 4 x 60.5, four times the average of the numbers from 1 to 120. For the degree-6 and degree-10
vertices, the corresponding values are 363 = 6 x 60.5 and 605 = 10 x 60.5.

To be suitable as a die, a polyhedron must be isohedral. Its symmetry group must be transitive on
its faces [7]. The platonic solids are isohedral and so are the rhombic triacontahedron and the diskyakis
triacontahedron. The isohedral property ensures fairness, guaranteeing that each face is equally likely to
turn up provided that (1) the die is a physically perfect rendition of the polyhedron, and (2) the toss does
an ideal job of sampling from the set of available states [9]. Of course, in the real world, neither of these
two conditions is ever realized. And this is why numerical balancing is so important. As mentioned earlier,
it gives die manufacturers ways of hedging against the possiblity (rather, the certainty) of bias caused by
imperfections in manufacturing.

If the number of faces, n, is small, then there is no need for integer programming or any other compu-
tationally intensive methods. With pencil and paper, one can enumerate all numberings of a d4, d6, d8, and
if one has a lot of patience, a d12. (And The Dice Lab does offer an optimally numbered d8, the only one
on the market, as far as we are aware.) One could employ brute-force enumeration to investigate all possi-
ble numbers of a d20, but if we want to number polyhedra with even more faces, brute-force enumeration
becomes less and less appealing and our IP model becomes more and more of an attractive tool.

A Balanced d30

Here, the set of vertices V' is the union of two disjoint sets, V3 (the set of degree-3 vertices) and Vj (the
set of degree-5 vertices). For each v € V3, we let H,, equal the set of three faces that are adjacent to vertex
v. In a rhombic triacontahedron, each set H, forms a hexagonal region. For each v € V;, we let S, equal
the set of five faces that are adjacent to vertex v. In the rhombic triacontahedron, each set S, is star shaped.

Figure 7: Two views of a (virtual) numerically balanced d30.

For the d30, we did not try to balance face sums. The reason is that we judged the sets of four faces that
are adjacent to a particular face to be somewhat strange in appearance. Ignoring the face sums, we modified
the approach we used in the d20 case to search for a numbering that obeys the opposite numbers convention
and has vertex sums that are as close to being balanced as possible. We did this by solving the linearization
of the following model:

minimize Z’(> a:f)—46.5‘ + Z‘(Z xf)—77.5‘

veVs feH, veVs fesS,
subject to the assignment, linking, and opposite-numbers constraints.

Using Gurobi, we obtained an optimal solution that corresponds to the numerically balanced d30 shown in
Figure 7. On this problem, Gurobi required 2.36 seconds and a total of 77328 simplex algorithm iterations

to solve the LP relaxations at the 3442 nodes of the branch-and-bound tree. All of these statistics are quite a
bit higher than those in the d20 problem.

A Balanced d120

We began this entire project because we were interested in numbering a 120-sided die based on a
diskyakis triacontahedron. The diskyakis triacontahedron can be obtained by turning each face of a rhom-
bic triacontahedron into a pyramid with a rhombus as its base. Three half pyramids come together to form
equilateral triangles comprised of six faces. Twenty of these triangles are arranged in icosahedral fashion, as
shown in Figure 8. As mentioned earlier, the polyhedron has 120 faces and 62 vertices. Thirty of the vertices
are degree 4 (the black dots), twenty are degree 6 (the gray dots), and the remaining twelve are degree 10
(the white dots).

Figure 8: A schematic for a 120-sided die.

Here, the set of vertices V' is the union of three disjoint sets: Vy (the set of degree-4 vertices), Vg (the set
of degree-6 vertices), and Viq (the set of degree-10 vertices). For each v € Vy, we let (Q,, denote the set of
four faces that meet at v. The faces in @), form a quadilateral-shaped cap centered at v. For each v € Vg, we
let H,, denote the set of six faces that meet at v. The faces in H, form a hexagonal cap centered at v. And
for each v € Vg, we let D,, denote the set of ten faces that meet at v. The faces in D, form a decagonal cap
centered at v.

In an effort to search for a numbering that has numerically balanced vertices, once again ignoring face
sums for the same reason as in the d30, we attempted to solve a linearization of the following nonlinear
model:

minimize S wp =22 + 3w —863) + 3 [(3 wy) 605

veVy feQy veVs fEH, veVig fE€D,
subject to the assignment, linking, and opposite-numbers constraints.

We found that Gurobi was not able to solve the full mixed integer program for the d120. After several
days of branch and bound, the branch-and-bound tree still had tens of millions of unexplored nodes (and was
still growing). Fortunately, after all of this computation, Gurobi was able to find a solution that was very
close to having numerically balanced vertices. All of the degree-10 vertices had vertex sums of 605, and all
of the degree-6 vertices had vertex sums of 363. Moreover, 28 of the 30 degree-4 vertices had vertex sums

of 242. Unfortunately, two of the degree-4 vertices were off by 2. One had a vertex sum of 240, a deviation
of —2, and the other one (its opposite on the d120) had a vertex sum of 244, a deviation of +2.

At this point, we tried various forms of IP-based local search. In the final (successful) version, starting
from our error-4 solution, we randomly picked a face and “grew” the face, selecting its neighbors, all of
its neighbors’ neighbors, and all of its neighbors’ neighbors’ neighbors. We kept all of the variables that
corresponded to the selected faces fixed at their values in the error-4 solution, and we used Gurobi to solve
the reduced model, allowing it to do its best with the unfixed variables. We did this repeatedly. And after
dozens of hours, Gurobi found a solution with error 0, a solution with numerically balanced vertices. The
solution is shown in Figure 9, and a photo of the physical object is shown in Figure 10.

Figure 10: The Dice Lab’s numerically balanced d120.

Conclusions

Many if not most of the polyhedral dice on the market today are not numbered in as balanced a manner as
possible. This could be due to the use of historical numberings that may predate the wide use of computers.
In our view, there is no good reason to continue using these antiquated numberings.

We have described both the rationale and a method for creating new and improved numberings. Future
work includes the application of these methods to additional polyhedral dice. Studies could be carried out
to determine the most common sources of bias for different kinds of dice. The results of such studies would
aid in prioritizing the importance of different types of numerical balancing.

References

[1] A. Bartlett, T.P. Chartier, A.N. Langville, and T.D. Rankin, An integer programming model for the
Sudoku problem, J. of Online Mathematics and its Applications 8 (2008).

[2] R.A. Bosch, Integer programming and Conway’s game of Life, SIAM Review 41:3 (2006), pp. 594-
604.

[3] R. Bosch. Opt art, Math Horizons Feb. (2006), pp. 6-9.

[4] D.-S. Chen, R.G. Batson, and Y. Dang, Applied Integer Programming: Modeling and Solution, Wiley,
2010.

[5] M.J. Chlond, Classroom exercises in IP modeling: Su doku and the log pile, INFORMS Transactions
on Education 5:2 (2005), pp. 77-79.

[6] The Dice Lab, Numerically-balanced d20 page, available at http://thedicelab.com/BalancedStdPoly.html,
January 2016.

[7] P. Diaconis and J.B. Keller, Fair Dice, The American Mathematical Monthly 96:5 (1989), pp. 337-339.

[8] Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual, availabe at http://www.gurobi.com,
January 2016.

[91 B. Thurston, http://mathoverflow.net/questions/46684/fair-but-irregular-polyhedral-dice (accessed 1/25/16).

[10] L. Wolsey, Integer Programming, Wiley-Interscience, 1998.

