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For ewor d

Jim Mrrison is to be congratulated on producing this very inportant book.
It used to be thought that to make the nearest thing to a perfect car, it
was hnecessary for each conponent to be produced to satisfy the very
narrowest specifications. This is the philosophy that produced the Rolls
Royce. Unfortunately the car was not only exceptional in reliability but
al so exceptional in cost.

It is remarkable that as far back as 1957 Jim Morrison cane up with a very
different and inportant concept. This was to use in engineering design the
concept of transmission of error. Wth this approach, it becane clear that
to produce low error transmission in the characteristics of an assenbly
certain conmponents had to satisfy very tight specifications and these were
expensive to achieve. However ot her conponents that had nmuch |ess effect
on the performance of the assenbly could have much wi der and | ess expensive
speci fications. He showed us how to find out which conponents nust have
very narrow specifications and which could be nuch |ess narrow. By
spendi ng noney where it would do the nmpst good, it was possible to produce
a car at a noderate cost whose performance and reliability were extremely
hi gh. Morrison’s concept can be applied in all areas of engineering
design. His concept has had profound effects. Those conpanies that ignore
it do so at their peril.

History is full of exanples where the origin of an inportant concept was
not known or was ignored until a much later tine. This has been true in
the case of robust design described above. Sonetinmes not only has the
originator of the idea been forgotten but the essentials which he devel oped
have been misapplied. |In particular, Jimhad pointed out the inportance of
knowi ng, at |east approximately, the variances of the conponents in order
to determne the variance of the assenbly. In later versions of this
concept such matters have been given far too little attention. W are
particularly grateful, therefore, for this book in which Jim describes

these techniques with clarity and accuracy.

CGeorge E. P.Box FRS

Emeritus Professor, University of Wsconsin, USA
Honorary Menber of the American Society for Quality

I naugural hol der of the George Box Medal for outstanding

contributions to business and industrial statistics awarded by the
Eur opean Network of Business and Industrial Statisticians (ENBIYS)



Pr ef ace

This introductory text on statistical engineering is witten by an engi neer

for an engineering readership. It is hoped it wll appeal both to
practising engineers and to students, and (indeed) to school |Ieavers
contenpl ating engineering as a career. It may al so be useful to managers

who are concerned with the quality of manufactured products.

In spite of all the effort over centuries to achieve absolute precision,
engineering is still (and probably always will be) beset by variability
which is manifest in many different ways — properties of raw materials, the

envi ronnent, neasurenent error, process variability, etc.

Statisticians, too, are beset by variability. |If variability did not exist
their branch of mathematics would (probably) never have conme into
exi stence. Variability is their focal point. They have devel oped powerful
anal ytical techniques which can be of enornmous benefit to society in
general and to specialists in other branches of science and technology in

particul ar.

Engi neers wusing statistical methods need not concern thenmselves wth
profound issues of statistical inference or the subtleties of statistical
mat hemat i cs. They require only famliarity with relevant statistical
nmet hods, an understanding of how they work and how to use them safely
wi thout running into danger. Sone familiarity with statistical term nology
is also desirable so that they can comrunicate with statisticians when the

need arises. That is what this book is all about.

The sequence of topics is not linked in any way to the theoretical
devel opnent of mathematical statistics. The text begins with a non-
mat hemati cal exami nation of the nature of variability in engineering data,
foll owed by an explanation of sone basic statistical nethods for dealing
with variability. It then follows the pursuit of variability reduction in
manuf acturing industry starting with production, followed by engineering
design, then research and devel opnent. Finally, measurement, statistical
conputing, and quality managenent are dealt wth as background topics.
Al though it is convenient to use manufacturing industry as a vehicle for
denonstrating the use of statistical nethods it nust be enphasised they are

wi dely applicable in other branches of engineering.



Statistical nethods provide the only satisfactory way of dealing with the
variability that exists in every engineering situation. The buck doesn’t
stop at ground level. The responsibility for dealing with variability is
carried by engineers and managers at all levels right up to chief
executive. The engineer who is lacking in statistical skill is less than
conpetent to handle variability. For that reason statistical engineering
should be a continuing professional developnment interest for practising

engi neers irrespective of seniority.

Engi neering students nust recognise that statistical skills wll be
important to them in their future careers no matter what branch of
technol ogy they enter or how high they set their sights. As fee-payers
they are entitled to look critically at their academ c curricula. |If they
graduate in an academnmi c establishnent at which no provision is nade for
teaching the elenents of statistical engineering they will find thenmselves
later in life conpeting on unequal terms wth statistically conpetent
engi neers who are better equipped to deal with the reality of the world.

There is a nessage here, too, for school |eavers who are considering a
prof essi onal career in engineering. They should enquire carefully about
the curriculum of any engineering degree course they are thinking of
entering. If there is no evidence of statistical engineering content they
should pass it by and look at the next on their list before commtting

t hensel ves.

This book introduces a broad range of statistical nethods that are rel evant
to engineering. These are presented with the mninmum of nmathematics and
t he maxi num of explanation. \Where statistical jargon is used the words and
phrases are printed in italics at the first entry so that the neaning wl
be self-evident from the context. The object is to build bridges of
under standi ng between the professional disciplines of engineering and
statistics.

To assist the readers who may wi sh to take the subject further than a basic
introduction (particularly in areas of research) extensive reference lists

are provided at each chapter end. In addition four appendices offer
gui dance for further study. A fifth appendix accommpdates statistical
t abl es.
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Nature of Variability

There is no engineering product so sinple that only one source of
variability affects its dinensions or properties. Take two exanples of
products which are relatively sinple in their physical appearance - high
carbon steel wire and m |k bottles.

The tensile strength of steel wire depends on nunerous factors: the carbon
content of the ingot from which rods were nmade in the rolling mll; the
tenperature of the heat treatnent furnace through which the rods were
passed; the rate of passage through the furnace; the tenperature of the
guenching bath; the anbient tenperature in the heat treatnment shop; the
nunber of dies through which the rods were drawn to finished wire size; the
rate of drawing; the anbient tenperature in the wre mll, etc

Variability in any of these factors is likely to generate variability in

tensile strength.

One of the hazards of a milkman's life is the possibility of being stopped
in the street by a weights and neasures inspector. M1k bottles are filled
to a predeterm ned |evel on autonatic machi nes. The capacity at that |eve

is determined by the external profile of the bottle and by its wall

t hi ckness. The bottles are made on nulti-head automatic nmachines by
droppi ng gobs of nmolten glass into nmetal moulds (one at each work station),
piercing them hollow, then inflating them with conpressed air until they
fill the noulds. The external profile can be affected by different
settings at each work station, by nmould differences, by fluctuations in air
pressure, by sagging after release from the moulds, and by mal functioning
of the automatic timng gear which controls the various functions. The
wal | thickness is determned by the setting of the gob feeder and this in
its turn is affected by the viscosity of the glass, the forehearth
tenperature, the action of the shears which cut off successive gobs from
the continuous flow of the feeder. Variability in any of these process
factors nay contribute to variability in the volunetric capacity of bottles

i n continuous production.

It nmust be assuned that nost engineering products which are infinitely nore
conplex than steel wire or mlk bottles will be equally susceptible to a
mul titude of factors located in raw nmaterials, conponents, processes and

the environnent which are capable of affecting the properties and
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di mrensions of a finished product. It is therefore inportant for engineers
to have an understanding of the way in which random conbinations of
i ndependent sources can affect the variability of a finished product.

This can be denponstrated with random conbi nations of the variables R, Y & B
in Table 1.1. These single-digit nunbers in the range 0-9 were generated
by throwing twenty-faced icosahedron coloured dice (red, yellow and bl ue)
with the nunmbers zero to nine engraved twi ce on each die. The dice were
invented in the 1950/60 period by M Yasushi |SH DA and patented by Tokyo-

Shi baura Electric Conpany. They were marketed and distributed by the
Japanese Standards Association for denonstrating the principles of
statistical quality control. In the discussion that follows the data in
Table 1.1 will be used to denpnstrate some of the phenonena of variability

that are encountered in engineering data without resort to the mathematics
of probability theory. It is hoped this will help the reader to understand

the rel evance of statistical nethods to be described | ater.

Table 1.1 Dice Scores

R Y B R+Y+B Mean Range R Y
0 6 5 11 ) 0
0 8 9 17 ) 0
4 6 5 15 ) 13.8 6 24
7 0 6 13 ) 0
9 4 0 13 ) 36
1 9 4 14 ) 9
7 0 3 10 ) 0
7 3 6 16 ) 12. 2 9 21
2 4 1 7)) 8
1 9 4 14 ) 9
(continued for one hundred trials)

One hundred trials were conducted, but only the first ten are recorded in
the table. Readers who are not convinced that the trials are properly
reported are at liberty to conduct their own tinme-consum ng experinents.
Also recorded in the table are the sunms R+Y+B, and the products RxY, along
with the mean and the range of groups of five. In statistical terns, the
nmean of a set of data is the sum of the individuals divided by the nunber
of individuals. The range is the difference between the |argest and

smal | est individual s.



The frequency distributions are as foll ows

R, Y&B Frequency R+Y+B Frequency
0 30 0,1 0
1 38 2,3 1
2 20 4,5 2
3 38 6,7 7
4 29 8,9 12
5 31 10, 11 15
6 29 12,13 24
7 32 14, 15 17
8 21 16, 17 4
9 32 18, 19 9
20,21 5
22,23 3
24, 25 1
26, 27 0

These can be represented graphically in Figs.1.1 & 1.2.

Frequency
40 ~
] B
- B! u . ] —]
20 -
[o) - T T T g T T L v T
o 1 2 3 4 5 6 7 a 9
Score

Fig. 1.1 Individual dice scores

In a perfect world one might expect Fig.1.1 to display thirty scores in
each of the ten categories 0-9, but the bar chart (or histogram to use a
statistical term shows sonme degree of irregularity. |If bias was suspected
it would be necessary to run a much nore extensive series of trials to show
whet her the dice were |oaded in favour of scores 1 and 3 at the expense of
scores 2 and 8. In the absence of such evidence it can be assuned that the
scoring conforns to a rectangular distribution and that the irregularity is

no more than is comonly encountered in real life collections of data.
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Fig. 1.2 R+Y+B dice scores

In sharp contrast, the bar chart for the sum of the three colours (Fig.
1.2) shows an entirely different pattern of distribution. There is a
mar ked central tendency around a nean score of 13.5 which is easy to
explain. Al possible conmbinations of scores on the three dice are equally
likely. There are many different conbinations yielding totals of
10,11,12,13,14 or 15, but very few which can yield extrene values of
0,1,2,3 or 24,25,26,27. 1In fact there is only one conbination 0+0+0 which
could yield 0 and only one other conbination 9+9+9 which could yield 27,

and neither occurred in this relatively small set of trials.

Symmetrical bell-shaped distributions exhibiting a central tendency are
commonpl ace in engineering data. It is not unreasonable to argue these are
i ndi cati ve of random conbi nati on of independent factors contributing to the
variability of the data and to suggest that analytical statistical nethods

m ght be used to identify and control them

However, it nust not be assumed that other patterns of distribution wll
not occur in engineering data. The distribution of products of red and

yel l ow scores, RxY is highly skewed (i.e. asymetric) as shown in Fig.1.3.

Fragquamncy
a0 -
=0 =
o i ﬂ ﬂ n n | | o oo
0-9 10-19 'Zﬂ- 29 30-3% 40-49 ‘El:l -59 60-89 TO0-TS A0-80

Scorea

Fig. 1.3 R" Y dice scores
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Skewed distributions do occur in engineering when the effect of a
contributory factor is one-sided. For exanple, in a thernionic valve
electrons are emtted from the heated cathode and are attracted by a
positive voltage on the anode. They have to pass through the grid (a helix
of fine wire) to which a negative voltage is applied to control the
current. Any lack of uniformty in the grid helix can only increase, not
reduce, the anode current. Again, in a cylindrical mechanical product zero
ovality is the ultimte degree of perfection. Any finite degree of ovality
is positive if it is regarded as the excess of the mmjor dianeter over the
m nor without regard to orientation. In such circunmstances skewed data
di stributions are inevitable.

Fortunately statistical nmethods are available which are not confined
exclusively to data that conforms to a symretrical distribution. When
skewed distributions are encountered in engineering data they can often be

handl ed nore easily by nmaking a |l ogarithm c transformation of the data.

The data in Table 1.1 can be used to denobnstrate relationships between
sanpl es and popul ati ons. This is a matter of considerable inportance to
engi neers who often have to draw valid conclusions fromquite small sanples
of data. For exanple, in the early stages of devel opnent of a new product

it is necessary to check neasurenments of a few prototypes to determ ne

whet her the population will be on target and whether the (unavoidable)
spread of variability will lie confortably within specification tolerance
limts. In this instance the prototype data can be treated as a sanple

froma popul ati on that does not yet exist, yet a prediction has to be made.

This situation is sinmulated in the third and fourth colums of Table 1.1 by
taking the nean value and range of R+Y+B scores in successive groups of
five trials. This resulted in the foll owi ng twenty nean val ues, not one of
which coincided with the nean of the original set of R+Y+B scores (12.9).
The nearest was 13.2, but the extrenme exanples were 10.2 and 15.2.
Clearly, there were many instances in which the sanple mean woul d not have

gi ven a good estimte of the popul ation nean.

13.8 12.2 13.4 11.2 12.2 11.2 12.0 14.0 10.8 15.0
13.8 14.4 15.2 12.2 14.0 12.2 13.2 14.2 13.2 10.2

The range of R+Y+B scores over each group of five trials gave the follow ng

results.

6 9 13 16 10 15 4 9 8 12 15 19 12 5 183 7 9 17 13 7

1



If the range is taken as a crude neasure of overall variability (as many
devel opnent engi neers have been known to do in the past when witing
specification tolerances) it is clear that not even the highest value (19)
recorded in this set of trials would enbrace the span of the distribution
shown in Fig.1. 2. Most of the others would fall very far short of this

requi rement.

The relatively small sets of data used by engineers at the devel opnment
stage of a new product can be regarded as sanples from a popul ati on which
will exist when full scale production starts. The discrepancies in mean
value and variability which can exist between a sanple, and the popul ation
from which it is drawn, identify a serious hazard along the road from
desi gn, through devel opnent to production of manufactured products. It is
to be hoped that the straightforward denonstration of the risks given above
will alert engineers to the dangers and persuade them to listen nore
carefully to the advice of statisticians, or (better still) develop some
statistical skill on their own account.

So, if range is not to be regarded as a satisfactory neasure of overal
variability what el se can we do? Consider the followi ng small set of data:

16 18 16 10 14

The location of the data on a scale of measurenent can be identified by
cal cul ating the nean val ue.
(16+18+16+10+14)/5 = 74/5 = 14.8

The deviates of the individuals fromthe nmean are

16.0 — 14.8 = 1.2
18.0 — 14.8 = 3.2
16.0 — 14.8 = 1.2
10.0 — 14.8 = -4.8
14.0 - 14.8 = -0.8

The sum of these deviates, taking account of positive and negative signs,

will be zero. Suppose we square them before adding them together?

1.2243.22+ 1.224(-4.8)%2+(-0.8) %= 1.44 +10.24 +1.44 +23.04 +0.64 = 36. 80

This sum of squares is a powerful overall neasure of variability which
gi ves equal weight to all of the individuals, not just the extrene val ues.
It does, however, respond to the size of the data. If data from the sane

source had ten values the sum of squares would be (roughly) twi ce as | arge.



This can be overcone by dividing the sum of squares by the nunber of

i ndi viduals to give a nmean square:

In some situations the divisor should be one less than the nunber of

i ndi vidual s, but npre of that later in Section 2.2!

Sunmming squares to nmeasure variability is the foundation on which
statistical analysis is built. In nodern usage ‘statistics’ inplies much
nore than sinply recording events. In the hands of a conpetent engineer
statistical analysis is a powerful tool which should not be neglected. Now
read on!



Basic Statistical Methods

The absence of a sound statistical elenment in an engineering degree is a
seri ous weakness. A course in quality assurance enbracing techniques of
applied statistics along with principles of operations managenmrent woul d be
appropriate (Mrrison, 1997). The necessary basic statistical nethods are
presented in this chapter. The elenents of operations nmanagenent are

presented in Chapter 7.

2.1 Variance

Engi neers wishing to nmake extensive use of statistical methods nust first
come to terns with statistical variance. There appears to be common ground
bet ween engi neering and statistics because it is probably true to say that
in the early developnment of their subject statisticians borrowed the
concept of monents from nechanics. The nonent of the first order is used
to determine the location of a set of data on the scale of measurenent in
which the individual values were recorded and the monent of the second

order is used to neasure their dispersal (i.e. the variability).

If n individual values X; in a set of data are represented by the symbols

X;y X, X3 .. X ..X then the mean X and the variance V(X) are given by

1,

X=—aX
nax

V(%) =%é(x %

Consi der a data set of five values 1,8,8,9,6. The nmean and vari ance can be

calcul ated as foll ows:

A X = 1+8+8+9+6 = 32

\ X — =64
5

(X - X)* = (1-6.4) 2+(8-6.4) 2+(8-6.4) 2+(9-6.4) 2+(6-6.4) 2 = 41.20

41. 20

\ V(X = =8.24

14



When calculating the sum of squares of the deviates of the individuals

about the nmean it is often nore convenient to use the algebraic identity
a(x-X%=ax°- @x)*/n
. o 2 . .
The quantity a X is sonmetimes referred to as the crude sum of squares

(@%)?/n is then the correction factor and a(X - X)* is the adjusted sum of

squares. Applying this procedure to the set of data above gives the same
result as before:

A x’= 12+82482492462 = 246
(Ax)*/In = 322/5 = 204.80

& (X - X)*> = 246.00 — 204.80 = 41.20

It is not very convenient to have the mean and the variability expressed in
different units of neasurenent, such as ‘miles per hour’ and ‘mles per
hour squared’. To overcone this difficulty the square root of variance is
termed the standard deviation, signa.

0 = OV (X)
For the set of data consi dered above:
6 =OV(X) = (8.24 = 2.87

The set of five values 1,8,8,9,6 can now be summarised in statistical terns
as having a mean value X = 6.4 and a standard deviation 0 = 2.87. Not e
that the standard deviation (or the variance) is a powerful neasure of
variability taking account of every individual in the data set, not just
the extreme values 1 & 9. In this respect it is superior to the range
(i.e. the difference between the largest and snmllest values) which is
often used by engineers as a crude neasure of variability. Mor eover, no
prior assunption is made about the shape of the parent distribution. The
entire data set is taken just as it stands.

Engineers will appreciate that the statistical nean is analogous to a
centre of gravity and the statistical standard deviation is analogous to

the radius of gyration of a rotating nass.

It should be pointed out that statisticians sonetines use two other centra
val ues besides the mean when discussing a set of data. The nmedian is the

m d-point of the data when the individuals are arranged in order of

15



magni tude. The node is the npbst comonly occurring val ue. The nean, the
median and the node sonetines coincide exactly but this is not an
i nvari able rule.

2.2 Dvisor ‘n or ‘n-1'7?

Engi neers using a hand-held calculator for statistical calculations my be

perplexed to find two keys labelled ‘sxn’” and ‘sxn-1' (or corresponding

sub-routines in conputer software). \ich one should be used?

To clarify this it is necessary to consider the relationship between a
sanple and the larger population from which it was drawn. To nake a
distinction between population and sanple the synbols used for mean and

standard deviation will be X and 6 for the population, X and s for the

sanpl e. It will be assuned that the purpose of calculating X and s from

the sanple data will be to estimate the unknown paraneters X and 0 of the

popul ati on.

Wth the know edge that the 1,8,8,9,6 data set in the previous section
originated as five throws of an unbiased twenty-faced die capable of
generating a rectangul ar distribution of numbers in the range zero to nine

the data can be treated as a random sanple froman infinite population with

a mean value X = 4.5. The true sum of squares about the popul ati on nean

is therefore:

(X - X)?= (1-4.5) 2+(8-4.5) 2+(8-4.5) 2+(9-4.5) 2+(6-4.5) 2 = 59.25

Qbviously this is greater than the sum of squares previously calcul ated

about the sanpl e nean:

a(x - X)*= 41.20

As has already been seen in the previous chapter it is quite unusual for a
sanple mean to coincide exactly with the popul ati on mean. In the general

case, when the population nmean is not known in advance, the sum of squares

about the sanple nean will underestimate the true sum of squares and the
sanpl e standard deviation s wll wunderestimate the population standard
deviation 0. This can be conpensated by using the divisor ‘n-1'" when
calculating the variance. This is not just a fudge - there is sound

mat hemati cal reasoning to show this gives the best estimate of the

popul ation standard deviation 0.

16



Hence the rule: If the purpose is sinply to calculate the variance of a set

‘

of data, wuse the divisor n, but if the purpose is to estimate the
standard deviation of the population from which the sanple may have been
drawn, use the divisor ‘n-1'. Cbviously the difference is neither here nor
there in large data sets but there is a considerable difference with small
sanples which quite often crop up in engineering (for exanple, at the

prot ot ype devel opnent stage of a new product).

So, when estimating the variance of a population from sanple data we use

t he expression

2

I SN
S n_1a(xi X)

Conmputed in this way s? is an unbiased estimator of the popul ati on

vari ance V(X). The quantity n-1 is referred to as the degrees of freedom

associated with the estimate. The sum of the n deviations (X - X)is zero

by virtue of the definition of the nean. If values are assigned to n-1
i ndividuals the remnining one is already deterni ned. In many forns of
statistical analysis the degrees of freedom are identified by the synbol

u.

2.3 Covariance and Correl ati on

Engineers will sonmetinmes encounter bivariate data in which two variables
such as X and Y appear to be correl ated. Statistical covariance (cov)
nmeasures the degree of association, using suns of products in place of suns

of squares:

o

Cov (x,y) = %a(xi - %) (Y- V)

where Y, is the individual value of Y associated with an individual X;

As in the case of suns of squares, there is a useful algebraic identity for

sinmplifying the calculation of suns of products:

[EEN

o o

a(x-X) (y,-y) =axy - =axay,

=]

A graphical interpretation of covariance is given in Fig.2.1 where
i ndi viduals are plotted on an X, Y co-ordinate field.
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Fig. 2.1 Covariance and correlation

Since we are considering the product of the x and y deviates from their
nmeans it is appropriate to use an origin at the centroid of the data with
axes representing the deviates (X - X) and (Yy,- Y). These divide the field
into four quadrants, upper right, upper left, lower left, lower right. The
products will be positive in the upper right and lower |eft quadrants.

They will be negative in the upper left and | ower right quadrants.

If there is no association between the X and Yvariates, as in Fig.2. 1(a),
the positive and negative products wll cancel out. If there is a strong
association then either the positive products wll predonminate, as in

Fig.2.1(b), or the negative products, as in Fig.2. 1(c).

A di nensionl ess correl ation coefficient r can be used to neasure the degree
of associ ation:
ax -x) (yi-9)
Ja(x - %)% &y - 9)?

If there is a perfect association between the X and Y variates as in

Fig.2.1(d) the square of the sum of products will be nunerically equal to
the product of the sums of squares and the correlation coefficient will be
unity. It will be positive for a rising gradient and negative for a

falling gradi ent depending on whether the products of the x and y deviates
are positive or negative.

In the case of Fig.2.1(a) the correlation coefficient will be zero. In
Fig.2.1(b) and Fig.2.1(c) the correlation coefficient will have

intermedi ate values within the range +1.0.



2.4 Normal Distribution

Symmetric bell-shaped distributions of the type shown in Chapter 1, Fig.1.2
can be nodelled in statistical terms using the so-called Normal
Distribution (sometinmes referred to as the Gaussian distribution after the

cel ebrated German mat henmmti ci an).

The profile of this distribution is shown in Fig.2. 2.

0.13%

s " -

I
4]

I
M

I
=k
(=L

Fig 2.2 Normal distribution: X=0,06 =10

As seen in this diagramthe nmean is zero, the standard deviation is unity,
and the tails of the distribution extend to three standard devi ati ons (and
beyond, to infinity). The equation for the normal frequency curve is

1 x?
f(X) = Ee-%

The area to the left of the ordinate at x is given by
X
.. l R 2
OK) = —— @ €% dt
7= 0

Ext ensi ve tables of the values of C)(x)and 0(x) are to be found el sewhere

in the standard statistical literature but it is the area to the right of
the ordinate that is of special interest to production engi neers because it
can be wused to quantify the proportion of rejects falling outside
specification tolerance limts. Val ues of the variate x corresponding to
speci fic percentages of outliers P% are tabulated for convenient reference
in Appendi x E

In the following schematic diagram figures extracted from the table show
that only a very small fraction (less than 0.2% of the area under the
normal distribution curve lies beyond plus or ninus three standard

devi ati ons.

P[[0.2% 0.1%
X |2.88 3.09
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In theory the distribution extends to plus/mnus infinity but beyond three
standard deviations the height of the ordinate beconmes vanishingly small
Wthin three standard deviations of the nean the normal distribution
provides a good fit to many of the distributions encountered in engineering
dat a.

In some quarters extrapolations are nmade beyond three-sigm and minutely
small probabilities are quoted in parts-per-mllion, but the practice is
dubious and mllions of test results would be necessary to validate it. |If
an increased margin of safety is necessary it is nore sensible to specify
this in terms of the sanme scale of neasurenent as that which was used to
record the data, or as a nultiple of the standard devi ati on

One of the commnest applications of the nornal distribution in
manuf acturing engineering is to predict the proportion of units of product
likely to fall outside specification limts. Consider the case of a
product whose dinmension is intended to neet a specification tolerance of
80+£0.3. The process is running slightly above target with a nmean of 80.1

and a standard devi ati on of 0.14.

The tolerance Ilinmts can be expressed as multiples of the standard

deviation (i.e. standardi sed deviates):

Upper specification limt = (80.3 — 80.1)/0.14
(79.7 - 80.1)/0.14

+1. 43
-2.86

Lower specification limt

In the follow ng schematic diagram these standardi sed deviates are inserted
bet ween adjacent values extracted from the table of percentage points of
the normal distribution in Appendix E. The estimates PO/.5% and PO0. 2%
were arrived at by taking note that the value x=1.43 is alnpbst exactly
m dway between the ten and five percentiles and the value x = 2.86 is

closer to the 0.2 percentile than to the 0.5 percentile.

agao gono
P 10.0% || P»7.5% 5. 0% 0.5% P»0. 2% 0.2%
X 1.28 1.43 1.64 2.58 2.86 2.88
gogo goo

In this, and in subsequent schematic diagrams bold arrows pointing to a
double-lined box serve to focus readers’ attention on the issue under
di scussi on. The approxinmate equality sign » identifies estinmates that

have to be determ ned by interpol ati ng exact figures extracted fromthe



tables. It is not suggested these schematic diagrans shoul d be constructed
on every occasion that reference is nade to the tables in Appendix E. They
are used here sinply to denonstrate the process of visual interpolation

From the above display it can be seen that the proportion of fall-out is as
fol |l ows:

Above upper specification limt » 7.5%
Bel ow | ower specification limt » 0.2%

Tot al » 7.7%

If a full-dress table of the normal distribution function is used the
precise estimate is 7.85% Does the discrepancy of 0.15% really matter?

If the process was brought back on target the tolerance linmts would be at
X = 20.3/0.14 = +£2.14 standard deviations which is not quite midway

between the two and one percentil es.

gon
P 2.0% P»1.6% 1. 0%
X 2.05 2.14 2.33
goo

The total fall-out would then be 2" 1.6=3.2% less than half what it had
been. This would be advantageous but there would still be work to do to
get the variability reduced. The source(s) of variability would have to be
identified and brought under closer control. To elimnate fall-out the
standard devi ation would have to be reduced fromO0.14 to 0.10 (one sixth of
the overall tolerance). Even then, the process would have to be held
strictly on target. If this was not possible a standard deviation |ess

than 0.10 would all ow sone room f or nanoeuvre.

Before | eaving the Nornmal distribution it is worth noting that its standard
deviation is not just a nathematical abstraction. Fig. 2.2 page 19 shows
that the point of inflexion at which the distribution curve changes from
concave inwards to concave outwards occurs at one standard deviation and
the tangent at that point intersects the base line at two standard
devi ati ons. In this way the standard deviation does provide a valid
measure of the spread of the distribution, irrespective of the tails which

extend to infinity in both directions.
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