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Foreword

Jim Morrison is to be congratulated on producing this very important book.

It used to be thought that to make the nearest thing to a perfect car, it

was necessary for each component to be produced to satisfy the very

narrowest specifications.  This is the philosophy that produced the Rolls

Royce.  Unfortunately the car was not only exceptional in reliability but

also exceptional in cost.

It is remarkable that as far back as 1957 Jim Morrison came up with a very

different and important concept.  This was to use in engineering design the

concept of transmission of error.  With this approach, it became clear that

to produce low error transmission in the characteristics of an assembly

certain components had to satisfy very tight specifications and these were

expensive to achieve.  However other components that had much less effect

on the performance of the assembly could have much wider and less expensive

specifications.  He showed us how to find out which components must have

very narrow specifications and which could be much less narrow.  By

spending money where it would do the most good, it was possible to produce

a car at a moderate cost whose performance and reliability were extremely

high.  Morrison’s concept can be applied in all areas of engineering

design.  His concept has had profound effects.  Those companies that ignore

it do so at their peril.

History is full of examples where the origin of an important concept was

not known or was ignored until a much later time.  This has been true in

the case of robust design described above.  Sometimes not only has the

originator of the idea been forgotten but the essentials which he developed

have been misapplied.  In particular, Jim had pointed out the importance of

knowing, at least approximately, the variances of the components in order

to determine the variance of the assembly.  In later versions of this

concept such matters have been given far too little attention.  We are

particularly grateful, therefore, for this book in which Jim describes

these techniques with clarity and accuracy.

George E.P.Box FRS

Emeritus Professor, University of Wisconsin, USA

Honorary Member of the American Society for Quality

Inaugural holder of the George Box Medal for outstanding 
contributions to business and industrial statistics awarded by the 
European Network of Business and Industrial Statisticians (ENBIS)
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Preface

This introductory text on statistical engineering is written by an engineer

for an engineering readership.  It is hoped it will appeal both to

practising engineers and to students, and (indeed) to school leavers

contemplating engineering as a career.  It may also be useful to managers

who are concerned with the quality of manufactured products.

In spite of all the effort over centuries to achieve absolute precision,

engineering is still (and probably always will be) beset by variability

which is manifest in many different ways – properties of raw materials, the

environment, measurement error, process variability, etc.

Statisticians, too, are beset by variability.  If variability did not exist

their branch of mathematics would (probably) never have come into

existence.  Variability is their focal point.  They have developed powerful

analytical techniques which can be of enormous benefit to society in

general and to specialists in other branches of science and technology in

particular.

Engineers using statistical methods need not concern themselves with

profound issues of statistical inference or the subtleties of statistical

mathematics.  They require only familiarity with relevant statistical

methods, an understanding of how they work and how to use them safely

without running into danger.  Some familiarity with statistical terminology

is also desirable so that they can communicate with statisticians when the

need arises.  That is what this book is all about.

The sequence of topics is not linked in any way to the theoretical

development of mathematical statistics.  The text begins with a non-

mathematical examination of the nature of variability in engineering data,

followed by an explanation of some basic statistical methods for dealing

with variability.  It then follows the pursuit of variability reduction in

manufacturing industry starting with production, followed by engineering

design, then research and development.  Finally, measurement, statistical

computing, and quality management are dealt with as background topics.

Although it is convenient to use manufacturing industry as a vehicle for

demonstrating the use of statistical methods it must be emphasised they are

widely applicable in other branches of engineering.
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Statistical methods provide the only satisfactory way of dealing with the

variability that exists in every engineering situation.  The buck doesn’t

stop at ground level.  The responsibility for dealing with variability is

carried by engineers and managers at all levels right up to chief

executive.  The engineer who is lacking in statistical skill is less than

competent to handle variability.  For that reason statistical engineering

should be a continuing professional development interest for practising

engineers irrespective of seniority.

Engineering students must recognise that statistical skills will be

important to them in their future careers no matter what branch of

technology they enter or how high they set their sights.  As fee-payers

they are entitled to look critically at their academic curricula.  If they

graduate in an academic establishment at which no provision is made for

teaching the elements of statistical engineering they will find themselves

later in life competing on unequal terms with statistically competent

engineers who are better equipped to deal with the reality of the world.

There is a message here, too, for school leavers who are considering a

professional career in engineering.  They should enquire carefully about

the curriculum of any engineering degree course they are thinking of

entering.  If there is no evidence of statistical engineering content they

should pass it by and look at the next on their list before committing

themselves.

This book introduces a broad range of statistical methods that are relevant

to engineering.  These are presented with the minimum of mathematics and

the maximum of explanation.  Where statistical jargon is used the words and

phrases are printed in italics at the first entry so that the meaning will

be self-evident from the context.  The object is to build bridges of

understanding between the professional disciplines of engineering and

statistics.

To assist the readers who may wish to take the subject further than a basic

introduction (particularly in areas of research) extensive reference lists

are provided at each chapter end.  In addition four appendices offer

guidance for further study.  A fifth appendix accommodates statistical

tables.



6

Acknowledgements

The Institution of Electrical Engineers has agreed to parts of the article

Engineering Design - The Fount of Quality, published in the August 2000

issue of Engineering Management Journal, and repeated under the title

Quality Engineering Design in the June 2001 issue of Manufacturing

Engineer, to be included in Chapter 4.  Thanks are due to Tim Davis, Henry

Ford Technical Fellow for Quality Engineering at the Ford Motor Company,

for permission to use his case study in this chapter as an example of the

application of variance synthesis.

Material in Chapter 7 has been reproduced from Quality Management in the

Proceedings of the Institution of Mechanical Engineers 1985, Vol 199 No. B3

pp 153-159 by permission of the Council of the Institution of Mechanical

Engineers.

The author is grateful to Elwyn Davies and Hefin Rowlands of the former IEE

Quality Management Professional Group and to Clare Morris and Dan Grove of

the RSS Quality Improvement Committee for their support and encouragement

in organising joint discussions on statistical engineering issues between

the Institution of Electrical Engineers and the Royal Statistical Society

in London.

Thanks are due to Julian Booker, Simon Edwards, Allan Reese and Dave

Stewardson who have all been helpful in a variety of ways. Thanks are also

due to the staff of the Industrial Statistics Research Unit at the

University of Newcastle upon Tyne for assistance in preparing the text for

publication in CD ROM format.



7

1

_______________________________________________

Nature of Variability

There is no engineering product so simple that only one source of

variability affects its dimensions or properties.  Take two examples of

products which are relatively simple in their physical appearance – high

carbon steel wire and milk bottles.

The tensile strength of steel wire depends on numerous factors: the carbon

content of the ingot from which rods were made in the rolling mill; the

temperature of the heat treatment furnace through which the rods were

passed; the rate of passage through the furnace; the temperature of the

quenching bath; the ambient temperature in the heat treatment shop; the

number of dies through which the rods were drawn to finished wire size; the

rate of drawing; the ambient temperature in the wire mill, etc.

Variability in any of these factors is likely to generate variability in

tensile strength.

One of the hazards of a milkman’s life is the possibility of being stopped

in the street by a weights and measures inspector.  Milk bottles are filled

to a predetermined level on automatic machines.  The capacity at that level

is determined by the external profile of the bottle and by its wall

thickness.  The bottles are made on multi-head automatic machines by

dropping gobs of molten glass into metal moulds (one at each work station),

piercing them hollow, then inflating them with compressed air until they

fill the moulds.  The external profile can be affected by different

settings at each work station, by mould differences, by fluctuations in air

pressure, by sagging after release from the moulds, and by malfunctioning

of the automatic timing gear which controls the various functions.  The

wall thickness is determined by the setting of the gob feeder and this in

its turn is affected by the viscosity of the glass, the forehearth

temperature, the action of the shears which cut off successive gobs from

the continuous flow of the feeder.  Variability in any of these process

factors may contribute to variability in the volumetric capacity of bottles

in continuous production.

It must be assumed that most engineering products which are infinitely more

complex than steel wire or milk bottles will be equally susceptible to a

multitude of factors located in raw materials, components, processes and

the environment which are capable of affecting the properties and
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dimensions of a finished product.  It is therefore important for engineers

to have an understanding of the way in which random combinations of

independent sources can affect the variability of a finished product.

This can be demonstrated with random combinations of the variables R, Y & B

in Table 1.1.  These single-digit numbers in the range 0-9 were generated

by throwing twenty-faced icosahedron coloured dice (red, yellow and blue)

with the numbers zero to nine engraved twice on each die.  The dice were

invented in the 1950/60 period by Mr Yasushi ISHIDA and patented by Tokyo-

Shibaura Electric Company.  They were marketed and distributed by the

Japanese Standards Association for demonstrating the principles of

statistical quality control.  In the discussion that follows the data in

Table 1.1 will be used to demonstrate some of the phenomena of variability

that are encountered in engineering data without resort to the mathematics

of probability theory.  It is hoped this will help the reader to understand

the relevance of statistical methods to be described later.

Table 1.1 Dice Scores

R  Y  B R+Y+B Mean Range R × Y

0  6  5     11 )     0
0  8  9     17 )     0
4  6  5     15 ) 13.8 6    24
7  0  6     13 )     0
9  4  0     13 )    36

1  9  4     14 )     9
7  0  3     10 )     0
7  3  6     16 ) 12.2 9    21
2  4  1      7 )     8
1  9  4     14 )     9

(continued for one hundred trials)

One hundred trials were conducted, but only the first ten are recorded in

the table.  Readers who are not convinced that the trials are properly

reported are at liberty to conduct their own time-consuming experiments.

Also recorded in the table are the sums R+Y+B, and the products RxY, along

with the mean and the range of groups of five.  In statistical terms, the

mean of a set of data is the sum of the individuals divided by the number

of individuals.  The range is the difference between the largest and

smallest individuals.
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The frequency distributions are as follows

R, Y&B Frequency R+Y+B Frequency

  0    30  0,1     0
  1    38  2,3     1
  2    20  4,5     2
  3    38  6,7     7
  4    29  8,9    12
  5    31 10,11    15
  6    29 12,13    24
  7    32 14,15    17
  8    21 16,17     4
  9    32 18,19     9

20,21     5
22,23     3
24,25     1
26,27     0

These can be represented graphically in Figs.1.1 & 1.2.

Fig. 1.1  Individual dice scores

In a perfect world one might expect Fig.1.1 to display thirty scores in

each of the ten categories 0-9, but the bar chart (or histogram, to use a

statistical term) shows some degree of irregularity.  If bias was suspected

it would be necessary to run a much more extensive series of trials to show

whether the dice were loaded in favour of scores 1 and 3 at the expense of

scores 2 and 8.  In the absence of such evidence it can be assumed that the

scoring conforms to a rectangular distribution and that the irregularity is

no more than is commonly encountered in real life collections of data.
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Fig. 1.2 R+Y+B dice scores

In sharp contrast, the bar chart for the sum of the three colours (Fig.

1.2) shows an entirely different pattern of distribution.  There is a

marked central tendency around a mean score of 13.5 which is easy to

explain.  All possible combinations of scores on the three dice are equally

likely.  There are many different combinations yielding totals of

10,11,12,13,14 or 15, but very few which can yield extreme values of

0,1,2,3 or 24,25,26,27.  In fact there is only one combination 0+0+0 which

could yield 0 and only one other combination 9+9+9 which could yield 27,

and neither occurred in this relatively small set of trials.

Symmetrical bell-shaped distributions exhibiting a central tendency are

commonplace in engineering data.  It is not unreasonable to argue these are

indicative of random combination of independent factors contributing to the

variability of the data and to suggest that analytical statistical methods

might be used to identify and control them.

However, it must not be assumed that other patterns of distribution will

not occur in engineering data.  The distribution of products of red and

yellow scores, RxY is highly skewed (i.e. asymmetric) as shown in Fig.1.3.

Fig. 1.3 R × Y dice scores
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Skewed distributions do occur in engineering when the effect of a

contributory factor is one-sided.  For example, in a thermionic valve

electrons are emitted from the heated cathode and are attracted by a

positive voltage on the anode.  They have to pass through the grid (a helix

of fine wire) to which a negative voltage is applied to control the

current.  Any lack of uniformity in the grid helix can only increase, not

reduce, the anode current.  Again, in a cylindrical mechanical product zero

ovality is the ultimate degree of perfection.  Any finite degree of ovality

is positive if it is regarded as the excess of the major diameter over the

minor without regard to orientation.  In such circumstances skewed data

distributions are inevitable.

Fortunately statistical methods are available which are not confined

exclusively to data that conforms to a symmetrical distribution.  When

skewed distributions are encountered in engineering data they can often be

handled more easily by making a logarithmic transformation of the data.

The data in Table 1.1 can be used to demonstrate relationships between

samples and populations.  This is a matter of considerable importance to

engineers who often have to draw valid conclusions from quite small samples

of data.  For example, in the early stages of development of a new product

it is necessary to check measurements of a few prototypes to determine

whether the population will be on target and whether the (unavoidable)

spread of variability will lie comfortably within specification tolerance

limits.  In this instance the prototype data can be treated as a sample

from a population that does not yet exist, yet a prediction has to be made.

This situation is simulated in the third and fourth columns of Table 1.1 by

taking the mean value and range of R+Y+B scores in successive groups of

five trials.  This resulted in the following twenty mean values, not one of

which coincided with the mean of the original set of R+Y+B scores (12.9).

The nearest was 13.2, but the extreme examples were 10.2 and 15.2.

Clearly, there were many instances in which the sample mean would not have

given a good estimate of the population mean.

13.8 12.2 13.4 11.2 12.2 11.2 12.0 14.0 10.8 15.0

13.8 14.4 15.2 12.2 14.0 12.2 13.2 14.2 13.2 10.2

The range of R+Y+B scores over each group of five trials gave the following

results.

6 9 13 16 10 15 4 9 8 12 15 19 12 5 13 7 9 17 13 7
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If the range is taken as a crude measure of overall variability (as many

development engineers have been known to do in the past when writing

specification tolerances) it is clear that not even the highest value (19)

recorded in this set of trials would embrace the span of the distribution

shown in Fig.1.2.  Most of the others would fall very far short of this

requirement.

The relatively small sets of data used by engineers at the development

stage of a new product can be regarded as samples from a population which

will exist when full scale production starts.  The discrepancies in mean

value and variability which can exist between a sample, and the population

from which it is drawn, identify a serious hazard along the road from

design, through development to production of manufactured products.  It is

to be hoped that the straightforward demonstration of the risks given above

will alert engineers to the dangers and persuade them to listen more

carefully to the advice of statisticians, or (better still) develop some

statistical skill on their own account.

So, if range is not to be regarded as a satisfactory measure of overall

variability what else can we do?  Consider the following small set of data:

16 18 16 10 14

The location of the data on a scale of measurement can be identified by

calculating the mean value.

(16+18+16+10+14)/5 = 74/5 = 14.8

The deviates of the individuals from the mean are

16.0 – 14.8 =  1.2
18.0 – 14.8 =  3.2
16.0 – 14.8 =  1.2
10.0 – 14.8 = -4.8
14.0 – 14.8 = -0.8

The sum of these deviates, taking account of positive and negative signs,

will be zero.  Suppose we square them before adding them together?

1.2 2 +3.2 2 + 1.2 2 +(-4.8) 2 +(-0.8) 2 = 1.44 +10.24 +1.44 +23.04 +0.64 = 36.80

This sum of squares is a powerful overall measure of variability which

gives equal weight to all of the individuals, not just the extreme values.

It does, however, respond to the size of the data.  If data from the same

source had ten values the sum of squares would be (roughly) twice as large.
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This can be overcome by dividing the sum of squares by the number of

individuals to give a mean square:

36.7=
5
80.36

In some situations the divisor should be one less than the number of

individuals, but more of that later in Section 2.2!

Summing squares to measure variability is the foundation on which

statistical analysis is built.  In modern usage ‘statistics’ implies much

more than simply recording events.  In the hands of a competent engineer

statistical analysis is a powerful tool which should not be neglected.  Now

read on!
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2

_______________________________________________

Basic Statistical Methods

The absence of a sound statistical element in an engineering degree is a

serious weakness.  A course in quality assurance embracing techniques of

applied statistics along with principles of operations management would be

appropriate (Morrison, 1997).  The necessary basic statistical methods are

presented in this chapter.  The elements of operations management are

presented in Chapter 7.

2.1 Variance
Engineers wishing to make extensive use of statistical methods must first

come to terms with statistical variance.  There appears to be common ground

between engineering and statistics because it is probably true to say that

in the early development of their subject statisticians borrowed the

concept of moments from mechanics.  The moment of the first order is used

to determine the location of a set of data on the scale of measurement in

which the individual values were recorded and the moment of the second

order is used to measure their dispersal (i.e. the variability).

If n individual values ix  in a set of data are represented by the symbols

ni xxxxx ......,, 321  then the mean x  and the variance )(xV  are given by

ix
n

x ∑=
1

2)(
1

)( xx
n

xV i −∑=

Consider a data set of five values 1,8,8,9,6.  The mean and variance can be

calculated as follows:

ix∑ = 1+8+8+9+6 = 32

x∴  4.6
5
32

==

2)( xxi −∑  = (1-6.4) 2 +(8-6.4) 2 +(8-6.4) 2 +(9-6.4) 2 +(6-6.4) 2  = 41.20

)(xV∴  = 24.8=
5
20.41
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When calculating the sum of squares of the deviates of the individuals

about the mean it is often more convenient to use the algebraic identity

/)()( 222
iii xxxx ∑−∑=−∑ n

The quantity 
2

ix∑  is sometimes referred to as the crude sum of squares.

nxi /)( 2∑  is then the correction factor and 2)( xxi −∑  is the adjusted sum of

squares.  Applying this procedure to the set of data above gives the same

result as before:

2

ix∑ = 1 2 +8 2 +8 2 +9 2 +6 2  = 246

nxi /)( 2∑  = 32 2 /5 = 204.80

2)( xxi −∑  = 246.00 – 204.80 = 41.20

It is not very convenient to have the mean and the variability expressed in

different units of measurement, such as ‘miles per hour’ and ‘miles per

hour squared’.  To overcome this difficulty the square root of variance is

termed the standard deviation, sigma.

)(xVó √=

For the set of data considered above:

)(xVó √= = √8.24 = 2.87

The set of five values 1,8,8,9,6 can now be summarised in statistical terms

as having a mean value x  = 6.4 and a standard deviation ó  = 2.87.  Note

that the standard deviation (or the variance) is a powerful measure of

variability taking account of every individual in the data set, not just

the extreme values 1 & 9.  In this respect it is superior to the range

(i.e. the difference between the largest and smallest values) which is

often used by engineers as a crude measure of variability.  Moreover, no

prior assumption is made about the shape of the parent distribution.  The

entire data set is taken just as it stands.

Engineers will appreciate that the statistical mean is analogous to a

centre of gravity and the statistical standard deviation is analogous to

the radius of gyration of a rotating mass.

It should be pointed out that statisticians sometimes use two other central

values besides the mean when discussing a set of data.  The median is the

mid-point of the data when the individuals are arranged in order of
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magnitude.  The mode is the most commonly occurring value.  The mean, the

median and the mode sometimes coincide exactly but this is not an

invariable rule.

2.2 Divisor ‘n’ or ‘n-1’?

Engineers using a hand-held calculator for statistical calculations may be

perplexed to find two keys labelled ‘σxn’ and ‘σxn-1’ (or corresponding

sub-routines in computer software).  Which one should be used?

To clarify this it is necessary to consider the relationship between a

sample and the larger population from which it was drawn.  To make a

distinction between population and sample the symbols used for mean and

standard deviation will be X  and ó  for the population, x  and  s for the

sample.  It will be assumed that the purpose of calculating x  and s from

the sample data will be to estimate the unknown parameters X  and ó  of the

population.

With the knowledge that the 1,8,8,9,6 data set in the previous section

originated as five throws of an unbiased twenty-faced die capable of

generating a rectangular distribution of numbers in the range zero to nine

the data can be treated as a random sample from an infinite population with

a mean value X  = 4.5.  The true sum of squares about the population mean

is therefore:

2)( Xxi −∑ = (1-4.5) 2 +(8-4.5) 2 +(8-4.5) 2 +(9-4.5) 2 +(6-4.5) 2  = 59.25

Obviously this is greater than the sum of squares previously calculated

about the sample mean:

2)( xxi −∑ = 41.20

As has already been seen in the previous chapter it is quite unusual for a

sample mean to coincide exactly with the population mean.  In the general

case, when the population mean is not known in advance, the sum of squares

about the sample mean will underestimate the true sum of squares and the

sample standard deviation s will underestimate the population standard

deviation ó .  This can be compensated by using the divisor ‘n-1’ when

calculating the variance.  This is not just a fudge – there is sound

mathematical reasoning to show this gives the best estimate of the

population standard deviation ó .
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Hence the rule: If the purpose is simply to calculate the variance of a set

of data, use the divisor ‘n’, but if the purpose is to estimate the

standard deviation of the population from which the sample may have been

drawn, use the divisor ‘n-1’.  Obviously the difference is neither here nor

there in large data sets but there is a considerable difference with small

samples which quite often crop up in engineering (for example, at the

prototype development stage of a new product).

So, when estimating the variance of a population from sample data we use

the expression

22 )(
1

1
xx

n
s i −∑

−
=

Computed in this way s 2  is an unbiased estimator of the population

variance ).(xV  The quantity n-1 is referred to as the degrees of freedom

associated with the estimate.  The sum of the n deviations )( xxi − is zero

by virtue of the definition of the mean.  If values are assigned to n-1

individuals the remaining one is already determined.  In many forms of

statistical analysis the degrees of freedom are identified by the symbol

υ.

2.3 Covariance and Correlation

Engineers will sometimes encounter bivariate data in which two variables

such as x  and y  appear to be correlated.  Statistical covariance (cov)

measures the degree of association, using sums of products in place of sums

of squares:

)()(
1

),( yyxx
n

yxCov ii −−∑=

where iy  is the individual value of y  associated with an individual ix .

As in the case of sums of squares, there is a useful algebraic identity for

simplifying the calculation of sums of products:

iiiiii yx
n

yxyyxx ∑∑−∑=−−∑
1

)()(

A graphical interpretation of covariance is given in Fig.2.1 where

individuals are plotted on an X,Y co-ordinate field.
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Fig. 2.1  Covariance and correlation

Since we are considering the product of the x and y deviates from their

means it is appropriate to use an origin at the centroid of the data with

axes representing the deviates )( xxi −  and )( yy i − .  These divide the field

into four quadrants, upper right, upper left, lower left, lower right.  The

products will be positive in the upper right and lower left quadrants.

They will be negative in the upper left and lower right quadrants.

If there is no association between the x  and y variates, as in Fig.2.1(a),

the positive and negative products will cancel out.  If there is a strong

association then either the positive products will predominate, as in

Fig.2.1(b), or the negative products, as in Fig.2.1(c).

A dimensionless correlation coefficient r can be used to measure the degree

of association:

r   =   
22 )()(

)()(

yyxx

yyxx

ii

ii

−∑−∑

−−∑

If there is a perfect association between the x  and y  variates as in

Fig.2.1(d) the square of the sum of products will be numerically equal to

the product of the sums of squares and the correlation coefficient will be

unity.  It will be positive for a rising gradient and negative for a

falling gradient depending on whether the products of the x and y deviates

are positive or negative.

In the case of Fig.2.1(a) the correlation coefficient will be zero.  In

Fig.2.1(b) and Fig.2.1(c) the correlation coefficient will have

intermediate values within the range ± 1.0.
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2.4 Normal Distribution

Symmetric bell-shaped distributions of the type shown in Chapter 1, Fig.1.2

can be modelled in statistical terms using the so-called Normal

Distribution (sometimes referred to as the Gaussian distribution after the

celebrated German mathematician).

The profile of this distribution is shown in Fig.2.2.

Fig 2.2 Normal distribution: 0.1,0 == óx

As seen in this diagram the mean is zero, the standard deviation is unity,

and the tails of the distribution extend to three standard deviations (and

beyond, to infinity).  The equation for the normal frequency curve is

)(xφ  = 
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The area to the left of the ordinate at x  is given by
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x
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Extensive tables of the values of Ö )( x and )(xö  are to be found elsewhere

in the standard statistical literature but it is the area to the right of

the ordinate that is of special interest to production engineers because it

can be used to quantify the proportion of rejects falling outside

specification tolerance limits.  Values of the variate x corresponding to

specific percentages of outliers P% are tabulated for convenient reference

in Appendix E.

In the following schematic diagram figures extracted from the table show

that only a very small fraction (less than 0.2%) of the area under the

normal distribution curve lies beyond plus or minus three standard

deviations.

P 0.2% 0.1%

X 2.88 3.09
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In theory the distribution extends to plus/minus infinity but beyond three

standard deviations the height of the ordinate becomes vanishingly small.

Within three standard deviations of the mean the normal distribution

provides a good fit to many of the distributions encountered in engineering

data.

In some quarters extrapolations are made beyond three-sigma and minutely

small probabilities are quoted in parts-per-million, but the practice is

dubious and millions of test results would be necessary to validate it.  If

an increased margin of safety is necessary it is more sensible to specify

this in terms of the same scale of measurement as that which was used to

record the data, or as a multiple of the standard deviation.

One of the commonest applications of the normal distribution in

manufacturing engineering is to predict the proportion of units of product

likely to fall outside specification limits.  Consider the case of a

product whose dimension is intended to meet a specification tolerance of

80± 0.3.  The process is running slightly above target with a mean of 80.1

and a standard deviation of 0.14.

The tolerance limits can be expressed as multiples of the standard

deviation (i.e. standardised deviates):

Upper specification limit = (80.3 – 80.1)/0.14 = +1.43

Lower specification limit = (79.7 – 80.1)/0.14 = -2.86

In the following schematic diagram these standardised deviates are inserted

between adjacent values extracted from the table of percentage points of

the normal distribution in Appendix E.  The estimates P�7.5% and P�0.2%

were arrived at by taking note that the value x=1.43 is almost exactly

midway between the ten and five percentiles and the value x = 2.86 is

closer to the 0.2 percentile than to the 0.5 percentile.

 � � � � � �

P 10.0% P≈7.5% 5.0% 0.5% P≈0.2% 0.2%

X 1.28 1.43 1.64 2.58 2.86 2.88

 � � � � � �

In this, and in subsequent schematic diagrams bold arrows pointing to a

double-lined box serve to focus readers’ attention on the issue under

discussion.  The approximate equality sign ≈ identifies estimates that

have to be determined by interpolating exact figures extracted from the
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tables.  It is not suggested these schematic diagrams should be constructed

on every occasion that reference is made to the tables in Appendix E.  They

are used here simply to demonstrate the process of visual interpolation.

From the above display it can be seen that the proportion of fall-out is as

follows:

Above upper specification limit ≈ 7.5%
Below lower specification limit ≈ 0.2%

   _______
Total    ≈ 7.7%

   _______

If a full-dress table of the normal distribution function is used the

precise estimate is 7.85%.  Does the discrepancy of 0.15% really matter?

If the process was brought back on target the tolerance limits would be at

x = ± 0.3/0.14 = ± 2.14 standard deviations which is not quite midway

between the two and one percentiles.

    � � �

P 2.0% P ≈ 1.6% 1.0%

X 2.05 2.14 2.33

    � � �
The total fall-out would then be 2× 1.6=3.2%, less than half what it had

been.  This would be advantageous but there would still be work to do to

get the variability reduced.  The source(s) of variability would have to be

identified and brought under closer control.  To eliminate fall-out the

standard deviation would have to be reduced from 0.14 to 0.10 (one sixth of

the overall tolerance).  Even then, the process would have to be held

strictly on target.  If this was not possible a standard deviation less

than 0.10 would allow some room for manoeuvre.

Before leaving the Normal distribution it is worth noting that its standard

deviation is not just a mathematical abstraction.  Fig. 2.2 page 19 shows

that the point of inflexion at which the distribution curve changes from

concave inwards to concave outwards occurs at one standard deviation and

the tangent at that point intersects the base line at two standard

deviations.  In this way the standard deviation does provide a valid

measure of the spread of the distribution, irrespective of the tails which

extend to infinity in both directions.


